

Safety and Immunogenicity of Single and Multiple Injections of the Therapeutic Vaccine TG1050 in NUC-Suppressed Chronic Hepatitis B (CHB) Patients: **Unblinded Analysis of a Double-Blind, Placebo-Controlled Phase 1b Study**

San Francisco – November 2018

Fournier Claire¹, Habersetzer François², Sprinzl Martin¹, Inchauspe Genevieve¹¹, Halluard Celine¹², Sansas Benoit¹², Bendjama Kaïdre¹², Brandely Maud¹², Zoulim Fabien ¹³, Fol Stanislas⁴, Coffin Carla⁵, Leroy Vincent⁶, Ma Mang⁷, Wedemeyer Heiner⁸, Lohse Ansgar⁹, Thimme Robert¹⁰, Perrine Martin¹¹, Inchauspe Genevieve¹¹, Halluard Celine¹², Sansas Benoit¹², Bendjama Kaïdre¹², Brandely Maud¹², Zoulim Fabien ¹³ ¹ CHUM, Service d'Hépatologie, Montreal, Canada; ² CHU, Service d'Hépato-Gastroentérologie, Paris, France; ³ Johannes Gutenberg Universität, Medizinische Klinik, Mainz, Germany; ⁴ Hôpital Cochin, Service Gastroentérologie, Paris, France; ⁵ Universität, Medizinische Klinik, Mainz, Germany; ⁴ Hôpital Cochin, Service Gastroentérologie et Hépatologie, Paris, France; ⁵ University of Calgary, Liver Unit, Division of Gastroenterologie, Grenoble, France; ⁷ Northern Alberta Clinical Trials and Research Centre, Edmonton, Canada; ⁸ Medizinische Hochschule Hannover, Klinik für Gastroenterologie, Hepatologie und Endokrinologie, Hannover, Germany; ⁹ Universitätsklinikum Hamburg, Germany; ¹¹ Transgene SA, Dept. Maladies Infectieuses, Lyon, France; ¹² Transgene SA, Dept. Affaires Médicales, Illkirch, France; ¹³ Hospices Civils de Lyon, Hôpital de la Croix Rousse, Service d'hépato-Gastroentérologie, Lyon, France

PRODUCT DESCRIPTION AND OBJECTIVE

Product Description

TG1050 is based on a recombinant non-replicative Adenovirus 5 vector encoding for a large fusion protein comprising sequences of truncated Core, an almost full-length Polymerase and domains of Envelope ¹.

Figure 1: Fusion protein encoded by TG1050 comprising truncated HBV Core fused to a deleted and mutated HBV polymerase and 2 selected domains of Envelope (genotype D)

	-	L		
	Core t	Pol1	Env1	
1	. 148		(37 aa)	

Poster ID: 426

Objective of TG1050

To increase the functional cure rate in chronic HBV patients in combination with SOC and/or novel antivirals by triggering antiviral activity of T-cells through non-cytolytic and cytolytic mechanisms^{1, 4}.

STUDY DESIGN

It was a randomized, double blind, placebo-controlled and dose finding study. It included 2 sequential phases one single dose (SD) cohort and one multiple dose (MD) cohort. In SD & MD cohorts, 12 & 36 patients were randomized 1:1:1 across 3 dose levels (DLs) of 10⁹, 10¹⁰, 10¹¹ virus particles (vp) and then randomized 3:1 within each DL to placebo (4 patients in each dose group included 1 placebo in SD cohort; 9 patients in each dose group included 3 placebo in MD cohort). The study was conducted in 12 investigational centers in France. Germany and Canada. Patients received the

allocated randomized product as	•					-	•	
	₩1 ↓ ↓	.2 ↓	Ļ	ŧ	13 vis	sits	ŧ	
SD cohort		12 p	atients	s – 3 d	lose gr	oups	(3:1)	
TG1050		11	W12 ↓	ŧ	Ļ	ŧ	15 visits	Ļ
MD cohort				36	patien	ts – 3	dose gro	oups (9:3)
	↑↑↑ TG1050		-	W 1	2: Inte	rim a	nalysis	
 Study Objectives Primary Objectives: Safety and tolerability Dose and schedule of administration 	ation		• Ar	ntivira	<u>ry Ob</u> al acti r and	vity		nune resp
Selection Criteria Chronic hepatitis B (CHB) patients	s were e	ligible	when	they	met	the f	ollowing	criteria:
 NUC treatment: tenofovir (TDF) or entecavir (ETV) for ≥2 years HBV DNA level below 20 IU/mL for at least 6 months 	• Comp	its of S ensate	D coho d liver	ort on disea	ily) ase an	d no	·	 No co-ir No med cirrhosis

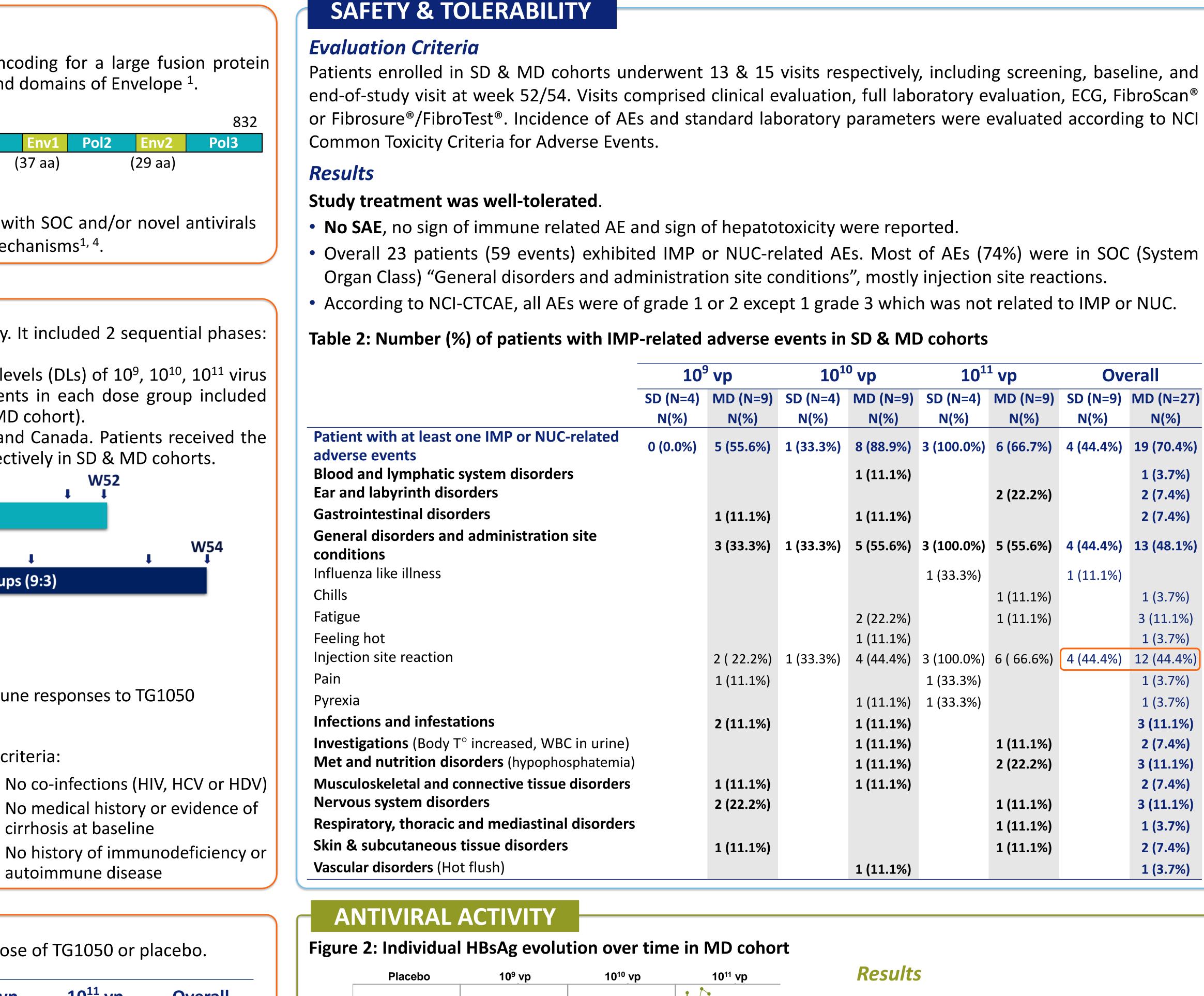
- for at least 6 months

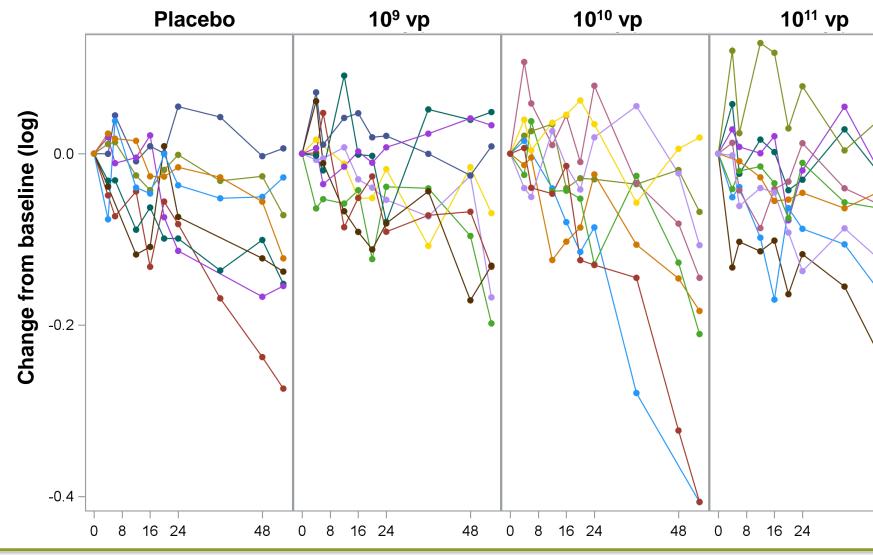
- ALT level below ULN

- HBsAg positive
- history of clinical hepatic decompensation No history of immunodeficiency or

DEMOGRAPHICS

A total of 48 patients were randomized and received a single or a multiple dose of TG1050 or placebo.


Table 1: Demographic characteristics at baseline in SD & MD cohorts		Placebo		10 ⁹ vp		10 ¹⁰ vp		10 ¹¹ vp		Overall	
		SD N=4	MD N=9	SD N=4	MD N=9	SD N=4	MD N=9	SD N=4	MD N=9	SD N=12	MD N=36
Gender	Female/Male	0/3	0/9	2/1	2/7	1/2	1/8	2/1	3/6	5/7	6/30
Age (years)	Median	53	52	44	45	48	52	41	52	48	49.5
Duration of HBV disease (years)	Median	20.2	12.8	26.8	14.9	19.3	12.8	11.9	20.1	19.7	14.6
Nucleo(s)tides treatment	ETV/TDF	1/2	3/6	1/2	4/5	2/1	2/7	1/2	5/4	5/7	14/22
Duration of NUC therapy (years)	Median	6.2	5.1	3.2	4.9	4.8	6	3.4	5.6	4.1	5.7
HBeAg status	Neg/Positive	3/0	8/1	3/0	9/0	2/1	8/1	3/0	9/0	11/1	34/2


CONCLUSION

Safety: Clinical trial primary end-point reached. Subcutaneous SD & MD injections of TG1050 in NUC-suppressed CHB patients is well tolerated over the 3 DLs. No negative impact on disease control, especially in the sensitive part of patients with no pre-immunity against the adenoviral vector, reinforces the robust safety profile of TG1050. Immunogenicity: TG1050 induces HBV-specific cellular immunity (IFN-g cells) in NUC-suppressed CHB patients without or with low anti-Ad5 pre-immunity. Background signals precluded interpretation in patients with high anti-Ad5 titers. Induced responses are specific of single or multiple antigens expressed by TG1050 (Core/Pol & Env). Detection of Env-specific responses is encouraging in a highly tolerogenic context for this antigen. Responses are detected following single and multiple injections: Intermediate dose 10¹⁰ vp is consistently immunogenic (~70% of patients). **HBsAg** evolution: HBsAg decline reaches ≈ 0.4 log over time in 2 patients of 10^{10} vp group.

REFERENCES ¹ Martin et al., Gut, Dec 2015; 64(12):1961-71 ³ ClinicalTrials.gov: NC ² Dion et al., J Virol, May 2013; 87(10):5554-63 ⁴ Poster ID 0438 at AA

	DISCLOSURES
ASLD 2018	All authors affiliated to Transgene SA are or were employees of Transg not have competing interest.

	10 ¹⁰	⁰ vp	10¹	¹ vp	Overall		
=9) 5)	SD (N=4) N(%)	MD (N=9) N(%)	SD (N=4) N(%)	MD (N=9) N(%)	SD (N=9) N(%)	MD (N=27) N(%)	
5%)	1 (33.3%)	8 (88.9%)	3 (100.0%)	6 (66.7%)	4 (44.4%)	19 (70.4%)	
		1 (11.1%)		2 (22.2%)		1 (3.7%) 2 (7.4%)	
L%)		1 (11.1%)				2 (7.4%)	
3%)	1 (33.3%)	5 (55.6%)	3 (100.0%)	5 (55.6%)	4 (44.4%)	13 (48.1%)	
			1 (33.3%)		1 (11.1%)		
				1 (11.1%)		1 (3.7%)	
		2 (22.2%)		1 (11.1%)		3 (11.1%)	
		1 (11.1%)				1 (3.7%)	
2%)	1 (33.3%)	4 (44.4%)	3 (100.0%)	6 (66.6%)	4 (44.4%)	12 (44.4%)	
1%)			1 (33.3%)			1 (3.7%)	
		1 (11.1%)	1 (33.3%)			1 (3.7%)	
L%)		1 (11.1%)				3 (11.1%)	
		1 (11.1%)		1 (11.1%)		2 (7.4%)	
		1 (11.1%)		2 (22.2%)		3 (11.1%)	
L%)		1 (11.1%)				2 (7.4%)	
2%)				1 (11.1%)		3 (11.1%)	
				1 (11.1%)		1 (3.7%)	
L%)				1 (11.1%)		2 (7.4%)	
		1 (11.1%)				1 (3.7%)	

Results

- HBsAg decline reaches 0.4 log over time, observed in 2 patients of 10¹⁰ vp group.
- No statistically significant difference was observed across treatment groups*.

Time (weeks)

* Exploratory analysis. This study was not powered for this test.

sgene SA the manufacturer of TG1050. Other authors do

HBV-SPECIFIC IMMUNOGENICITY

Evaluation Criteria

- precision were not considered significant.

Results

3 antigens

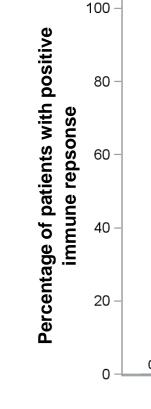
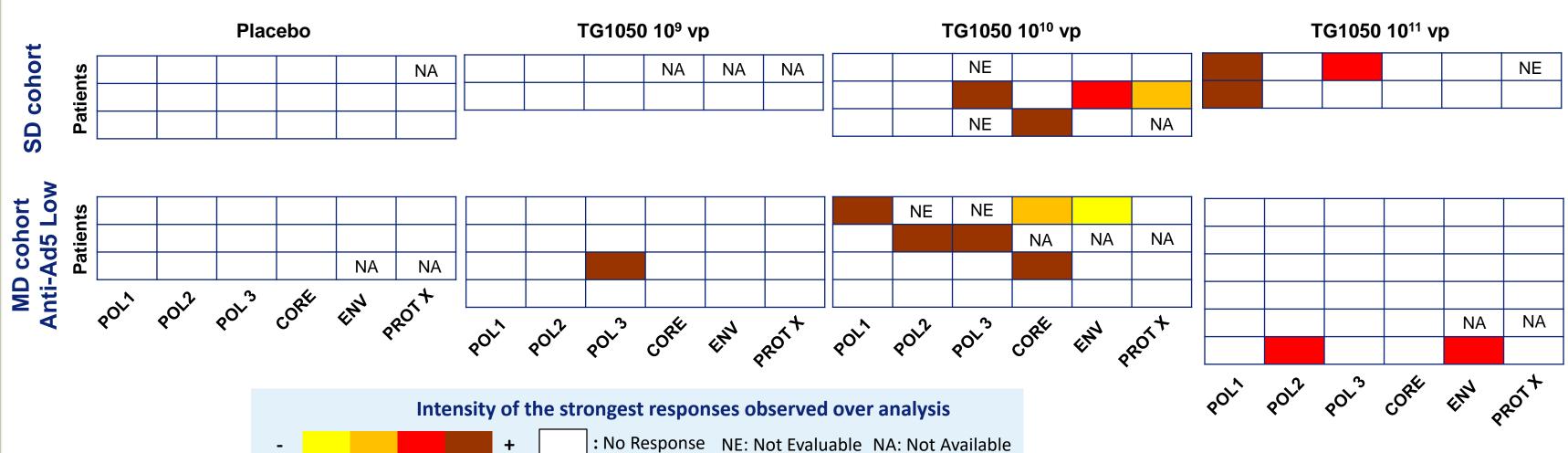
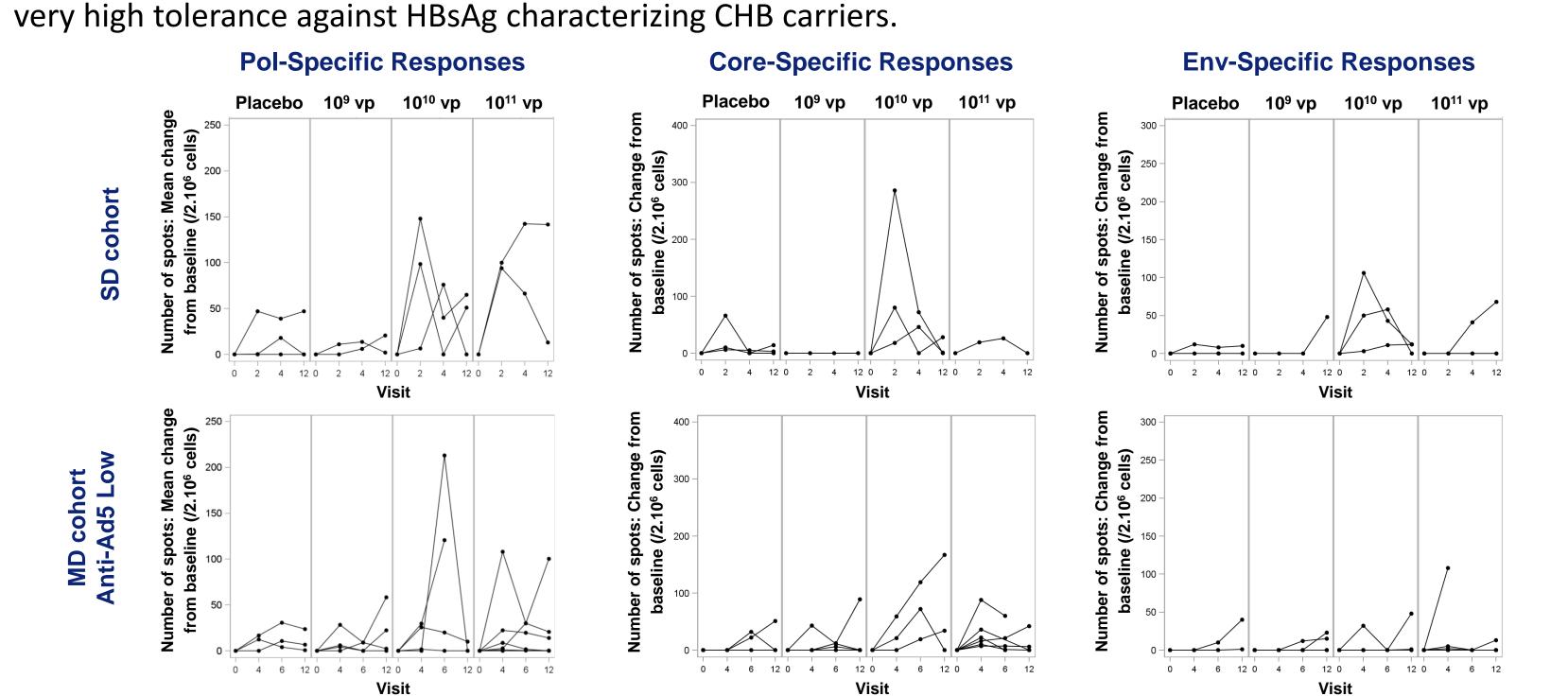
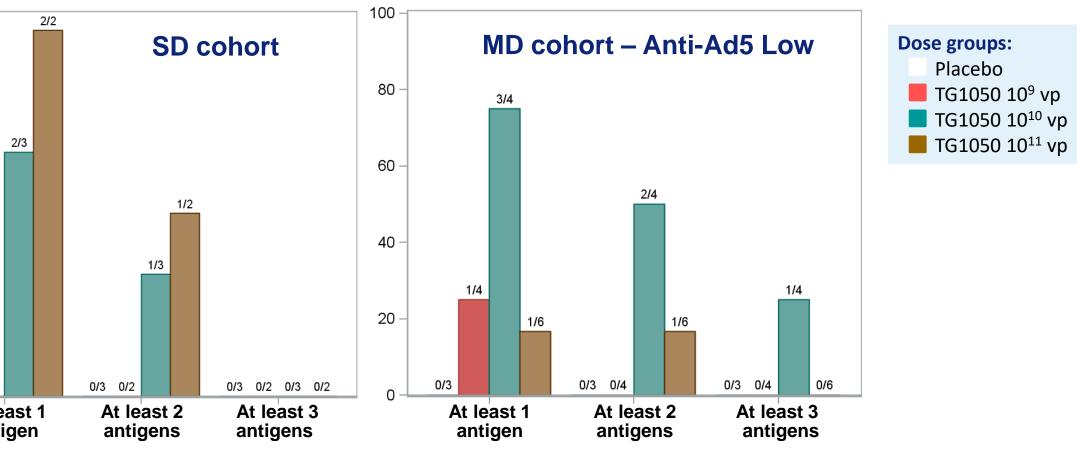




Figure 4: Heatmap of ELISpot responses. Patients with low anti-Ad5 pre-immunity are listed as lines and test conditions as columns • HBV-specific responses detected in SD & MD cohorts mainly in 10¹⁰ & 10¹¹ vp dose groups

Figure 5: Individual evolution of ELISpot responses over time in patients with low anti-Ad5 pre-immunity

Corresponding author: fabien.zoulim@inserm.fr


• Cell-mediated immune responses against HBV antigens were evaluated in patients by ELISpot IFNγ assay (10 day stimulation, 7 peptide pool: HBV Ag targeted by the vaccine: Pol1, Pol2, Pol3, Core & Env + HBV Ag not targeted by the vaccine: Protein X & vaccine vector: Ad5).

PBMC were collected in SD cohort at baseline, week 2, 4 & 12 and in MD cohort at baseline, week 4, 6 & 12. As no consensus exists on threshold of anti-Ad5 neutralizing antibody (nAb) potentially affecting vaccine immunogenicity, we defined arbitrarily 2 sub-groups using median value of anti-Ad5 nAb: (1) < Median: anti-Ad5 low ; (2)> Median: anti-Ad5 high pre-immunity.

• Pre-existing seropositivity is known to potentially affect immunogenicity of Ad5 based vectors: All patients of SD cohort were anti-Ad5 seronegative. In MD cohort, patients with anti-Ad5 high pre-immunity, similar or stronger signals were observed in some placebo-treated patients compared with vaccinees, which led to the impossibility of data interpretation in this sub-group. Hence, all reported analyses focus on data from patients with no or anti-Ad5 low pre-immunity.

Patients were adjudicated as responders for one antigen when at least a doubling of response or an increase of \geq 500 spots from baseline was observed on the ELISpot assay. Changes below the assay

Figure 3: Number of patients with low anti-Ad5 pre-immunity per dose group responding to at least 1, 2 or

Detectable responses in both SD & MD cohorts at 10¹⁰ & 10¹¹ vp doses • Env-specific responses detected despite TG1050 encoding for only small domains of Env/HBsAg as well as the